Abstract

The US and many parts around the world have experienced prolonged periods of heavy rainfall, severe floods, and droughts over the past 50 years. This study investigates the impacts of extreme hydrological events such as heavy rainfall and flood on the settlement behavior of continuous footing installed in unsaturated soil using a coupled Geotechnical-Hydrological finite element software, PLAXIS 2D. Initially, the effect of different degrees of saturation on the settlement behavior of the continuous footing of widths 1.5 m, 3.0 m, and 4.5 m was analyzed by applying a mechanical load. Then the settlement behavior of the footing was analyzed by applying heavy rainfall of intensity 102 mm/day for six days. Finally, the settlement behavior of the footing was analyzed by applying a flood head of 2.5 meters for seven days. The results indicated that the wetting front movement during heavy rainfall and flooding led to the weakening of soil strength and stiffness and induced additional settlements. The additional settlement induced by the flood was significantly higher than the heavy rainfall. The differential settlement was higher when the rainfall was applied on one side of the footing. The rebound of the elastic settlement was uniquely noticed when the flood head receded with time. The results indicated that not all the settlements were induced by the soil saturation but also due to the hydrostatic loading due to the flood head. The settlements induced by the flooding exceeded the allowable settlement of 25 mm, resulting in failure. These additional settlements caused by heavy rainfall and flood will lead to poor serviceability of the structures and cause the failure of the footing.

Highlights

  • According to the United States Geological Survey (USGS), Extreme hydrological events such as heavy rainfall, flood, and drought have become frequent in recent years

  • This study investigates the impacts of extreme hydrological events such as heavy rainfall and flood on the settlement behavior of continuous footing installed in unsaturated soil using a coupled Geotechnical-Hydrological finite element software, PLAXIS 2D

  • The heavy rainfall was applied for a period of six days and the water was allowed to infiltrate into the soil for another eight days numerically

Read more

Summary

Introduction

According to the United States Geological Survey (USGS), Extreme hydrological events such as heavy rainfall, flood, and drought have become frequent in recent years. These events affect the lives of humans, animals, and crops and the performance of the infrastructures. The 2014 New York flood, the 2015 Missouri flood, the 2016 Oklahoma flood, and Louisiana flood, and the 2017 California flood and Houston flood are some examples of severe floods that occurred in recent years The impacts of these extreme events on the performance of the footings that support various structures such as bridges, buildings, and earth dams and levees are ignored. The current loss estimation schemes ignore the damages caused by footing failures (bearing capacity and settlement) induced by extreme hydrological events

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call