Abstract
Pile foundations have been widely used in offshore engineering. In this study, a three-dimensional numerical model was used to investigate the seabed response around a mono-pile under wave-current loading. Reynolds-averaged Navier-Stokes equations were used to simulate the flow field, and Biot's consolidation equations were used for simulating the response of a porous seabed. The pore water pressure within soil and the effective stress along the depth of the seabed were simulated for various current velocities, with currents traveling either along or against the wave. Results indicate that the current has a significant effect on the effective stress and the pore water pressure distributions, which increases with the current velocity, and that the current traveling against the wave increases the liquefaction depth of the porous seabed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.