Abstract

This article investigates the flow of Maxwell nanofluid over a moving plate in a calm fluid. Novel aspects of Brownian motion and thermophoresis are taken into consideration. Revised model for passive control of nanoparticle volume fraction at the plate is used in this study. The formulated differential system is solved numerically by employing shooting approach together with fourth-fifth-order-Runge-Kutta integration procedure and Newton?s method. The solutions are greatly influenced with the variation of embedded parameters which include the local Deborah number, the Brownian motion parameter, the thermophoresis parameter, the Prandtl number, and the Schmidt number. We found that the variation in velocity distribution with an increase in local Deborah number is non-monotonic. Moreover, the reduced Nusselt number has a linear and direct relationship with the local Deborah number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.