Abstract

This paper presents laboratory and numerical simulations of run-up induced by irregular waves breaking on a gentle-sloping planar beach. The experimental data are well reproduced by a numerical model based on the nonlinear shallow water equations. By extending the incoming wave conditions considered in the laboratory experiments, the model is applied to study the run-up variability under highly energetic incoming conditions. The numerical results support the idea that, for cases characterized by the same incident peak frequency, infragravity run-up increases almost linearly with the offshore significant wave height. Moreover, the most energetic conditions lead to an upper limit of the swash similarity parameter of about 1.8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.