Abstract

Roughness effect on the heat transfer and pressure loss performances of microscale tubes and channels are investigated through a finite element CFD code. Surface roughness is explicitly modelled through a set of random generated peaks along the ideal smooth surface. Different peak shapes and distributions are considered; geometrical parameters are representative of tubes in the diameter range from 50 to 150 μm. The use of a fine enough mesh allows the direct computation of tube performances under the assumption of incompressible fully developed flow. As a result, a significant increase in Poiseuille number is detected for all of the configurations considered, while the effect of roughness on heat transfer rate is smaller and highly dependent on the tube shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.