Abstract

The occurrence and expansion of reflective cracking is a typical problem associated with the composite pavement that has a proven impact on the life of the continuous reinforced composite pavement. The current research studies a 3D finite element model to preset cracks at the top of the continuously reinforced concrete (CRC) layer’s transverse crack and at the bottom of the asphalt concrete (AC) layer based on the theory of linear elastic fracture mechanics in order to explore the factors responsible for the reflective cracking formation mechanism and expansion law. Considering the main stress parameters that affect the formation of reflective cracking (layer bottom tensile stress and vertical shear stress), the most unfavorable load position and the most unfavorable point of the corresponding stress parameter are determined that are then used to calculate the stress intensity factor of the crack tip under the coupling effect of multiple factors based upon the position and point above the crack, by using the confinement integral. The variance analysis of the stress intensity factor of the crack tip under the multifactor coupling effect is conducted via an orthogonal test in order to determine the main factors affecting the formation and development of reflective cracking. Meanwhile, the analysis of single-factor sensitivity is carried out on all these factors, which reveal the real contribution in the formation and expansion of reflective cracking in the continuous reinforced composite pavement. The results show that the most unfavorable load position for reflective cracking is when the load is on the side of the CRC layer’s lateral crack, while the most unfavorable point of the stress parameter is concentrated within the range of the wheel track. At the same time, analysis of multifactor variance and that of single-factor sensitivity show that the cracking mode of reflective cracking in the continuous reinforced composite pavement is a mixed one, dominated by K2 (slip type), supplemented by K1 (open type), and participated by K3 (tear type), whereas the AC layer’s preset-crack depth ratio, instantaneous temperature drop, and CRC-transverse-crack load transfer capacity are the main factors that affect the formation and development of the reflective cracking. Moreover, a better bonding state between the AC layer and the CRC layer improves the stress intensity factor of the preset crack tip on the bottom of the AC layer.

Highlights

  • Crack in a flexible overlay over an existing crack or joint, which usually occurs directly over the underlying cracks or joints

  • Reflective crack refers to those cracks that arise from underlying Portland cement concrete (PCC) pavement joint movement

  • A lot of research focusing on the reflective cracking of the asphalt concrete (AC) layer overlay of the old cement concrete pavement or the Portland cement concrete and asphalt concrete (PCC-AC) composite pavement has been conducted resulting in many constitutive models [3], which assisted in effective prevention and control of reflective cracking

Read more

Summary

Research Article

E occurrence and expansion of reflective cracking is a typical problem associated with the composite pavement that has a proven impact on the life of the continuous reinforced composite pavement. e current research studies a 3D finite element model to preset cracks at the top of the continuously reinforced concrete (CRC) layer’s transverse crack and at the bottom of the asphalt concrete (AC) layer based on the theory of linear elastic fracture mechanics in order to explore the factors responsible for the reflective cracking formation mechanism and expansion law. E variance analysis of the stress intensity factor of the crack tip under the multifactor coupling effect is conducted via an orthogonal test in order to determine the main factors affecting the formation and development of reflective cracking. Analysis of multifactor variance and that of single-factor sensitivity show that the cracking mode of reflective cracking in the continuous reinforced composite pavement is a mixed one, dominated by K2 (slip type), supplemented by K1 (open type), and participated by K3 (tear type), whereas the AC layer’s preset-crack depth ratio, instantaneous temperature drop, and CRC-transverse-crack load transfer capacity are the main factors that affect the formation and development of the reflective cracking. A better bonding state between the AC layer and the CRC layer improves the stress intensity factor of the preset crack tip on the bottom of the AC layer

Introduction
GM SG
CRC y z x
Load position
Findings
Stress parameters
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.