Abstract

The aim of this work is the evaluation of the radiation contribution to the steady-state heat transfer in metallic foams by means of the radiative conductivity model. Because of the complexity of the structure, reference is made to a simplified physical radiative model, where the elementary cell of the foams is treated as a cubic cell. The contribution of the radiation heat transfer is investigated on a local basis. The local radiative conductivity has been used to evaluate the influence of radiative heat transfer in a two dimensional conductive-convective-radiative problem involving a forced fluid flow within a heated channel filled with a metallic foam. The effect of the solid emissivity and the foam porosity is pointed out for different foams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.