Abstract

A three-dimensional numerical simulation is applied to a pulverized coal combustion field in a test furnace equipped with an advanced low-NO x burner called CI-α burner, and the detailed combustion characteristics are investigated. In addition, the validities of the existing NO x formation and reduction models are examined. The results show that a recirculation flow is formed in the high-gas-temperature region near the CI-α burner outlet, and this lengthens the residence time of coal particles in this high-temperature region, promotes the evolution of volatile matter and the progress of char reaction, and produces an extremely low-O 2 region for effective NO reduction. It is also found that, by lessening the effect of NO reduction in Levy et al.'s model and taking the NO formation from char N into account, the accuracy of the NO prediction is improved. The efficiency factor of the conversion of char N to NO affects the total NO concentration downstream after the injection of staged combustion air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.