Abstract

This paper presents the modeling of pultruded glass fiber reinforced polymer (GFRP) box girders consisting of built-up hat-shape sections and flat plates. The study addresses the effect of a thin concrete deck adhesively bonded to the top GFRP plate on flexural performance, as well as the behavior under positive and negative bending that simulates continuous girders. A three-dimensional finite element (FE) approach is proposed to predict the behavior of the GFRP system, including experimental validation. The efficacy of the girders is compared with other metallic box girders: carbon steel and corrosion-resistant metals, namely, stainless steel and aluminum. Failure is generally due to debonding of the concrete deck, and as such, the ultimate strength is not affected much by the girder material used. The study examines the single girder behavior as well as girder-group systems, to assess load distribution. It is shown that the AASHTO LRFD approach for load distribution can reasonably be used for the proposed girder systems. Design recommendations as to material selection are addressed to better use the girder system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.