Abstract

Estimation of the artificial hip joint contact area and pressure distribution during motions of daily life is important in predicting joint degeneration mechanism and implant wear. The purpose of this study was to develop a method of applying discrete element analysis (DEA) based on a rigid body spring model to artificial hip joint, and to analyze contact area and pressure distribution during different motions. Post-operative motion analyses of four basic motions, such as fast walking, slow walking, standing up and sitting down were performed by using VICON system and Kistler force plate. Implant orientation was obtained by matching the contours of 3D bone model and implant CAD model to those of the biplanar CR images. Triangular mesh at interior surface of cup model was considered as liner surface and used for applying DEA to artificial hip joint. Because stem model was considered to be a rigid body and consequential transformations occurred only inside the liner model, triangular mesh was considered to be a compressive spring respectively. The change of contact area and the pressure distribution under dynamic condition were calculated easily through these considerations, and rapid increase accompanied with change of area was observed in knee bending motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.