Abstract

Parallel replica dynamics is a method for accelerating the computation of processes charac- terized by a sequence of infrequent events. In this work, the processes are governed by the overdamped Langevin equation. Such processes spend much of their time about the minima of the underlying poten- tial, occasionally transitioning into different basins of attraction. The essential idea of parallel replica dynamics is that the exit distribution from a given well for a single process can be approximated by the distribution of the first exit of N independent identical processes, each run for only 1/N -th the amount of time. While promising, this leads to a series of numerical analysis questions about the accuracy of the exit distributions. Building upon the recent work in (C. Le Bris, T. Lelievre, M. Luskin and D. Perez, Monte Carlo Methods Appl. 18 (2012) 119-146), we prove a unified error estimate on the exit distributions of the algorithm against an unaccelerated process. Furthermore, we study a dephasing mechanism, and prove that it will successfully complete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.