Abstract

A distinct element method analysis is carried out to examine the development of shear bands in overburden soil subjected to a strike-slip fault. About 2.3 million spherical particles are used in the analysis and the results are compared with the shears observed at the Nojima earthquake fault during the 1995 Hyogoken Nanbu earthquake. En echelon shears and secondary shears which strike at lower angles to the basement fault – typical in strike-slip faults – are observed in the numerical analysis. Simple shear in the horizontal plane and drag due to the dependence of velocity on depth are confirmed to control the helicoidal shape of Riedel shears. Rotation of the compressional direction toward the fault strike as a result of slip along Riedel shears is also verified. It is found that the compressional direction is more horizontal within the area enclosed by Riedel shears than in outside areas and that these compressional directions produce secondary lower-angle shears that are less helicoidal. It is shown that the formation of column-like structures of particles and their subsequent buckling play significant micromechanical roles in three-dimensionally wrenched shears. The results of the numerical analysis, such as shear intervals and striking angles, show a resemblance to observational results at sites where sediment contains coarse grains and is subjected to strike slip with a small dip component, although they are not exactly the same as those observed at locations with similar overburden thicknesses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.