Abstract

In this paper, we present the results of numerical simulations of Octagonal Photonic Crystal Fiber (O-PCF). The fiber has a ring core made up of Germanium doped silica and cladding is made up of silica glass with aire-holes arranged in octagonal lattice. The O-PCF is capable of propagating 6 OAM modes with highest mode quality-OAM purity equal to 92% at 1.55µm. Other parameters investigated are OAM purity, Neff, Effective Area, Dispersion, Confinement loss and non-linearity. Finite Element Method (FEM) is used for analysis of O-PCF characteristics using COMSOL Multiphysics. High mode purity, flat dispersion and low confinement loss makes the proposed O-PCF a potential candidate for telecom applications such as high-speed, high-capacity, transmission, Space Division Multiplexing (SDM), 6G applications as well as for non-telecom applications such as Supercontinuum Generation (SCG).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call