Abstract

This study focuses on reducing NOx emissions in large-scale municipal solid waste (MSW) grate furnaces through in-bed combustion control. A multi-section fuel bed model with thermally thick treatment is developed to accommodate the configurations of large-scale MSW grate furnaces. The model incorporates detailed sub-grid models to simulate the intraparticle gradient, and the stochastic mixing is accounted to deal with the multi-section fuel beds with vertical drop-offs. The influences of primary air distribution and average grate velocity on combustion status and NOx emissions are investigated numerically and validated in a 600 t/d MSW grate boiler. The results indicate that combining a relatively low primary air ratio with a thickened fuel bed ensures both reduced NOx emissions and high burnout efficiency. By reducing the excess air ratio of primary air from 1.2 to 0.9 and distributing it through a rear-enhanced air mode, the overall NOx emission decreased from 398.50 mg/Nm3 to 215.05 mg/Nm3, although at the expense of an increased unburned carbon content from 1.995 wt% to 3.063 wt%. Further lowering the grate velocity to thicken the fuel bed allowed for leveraging the heterogeneous reduction effect of the char layer, reducing the NOx emissions to 184.95 mg/Nm3. Additionally, the unburned carbon content was also remarkably reduced to 1.560 wt%. The proposed strategies of delaying the primary air supply and thickening the fuel bed offer a cost-effective alternative to post-combustion measures, with which the MSW grate boilers can achieve lower NOx emissions while maintaining efficient and stable combustion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.