Abstract

The present article deals with the solution of nonlinear fractional Klein–Fock–Gordon equation which involved the newly developed Caputo–Fabrizio fractional derivative with non-singular kernel. We adopt fractional homotopy perturbation transform method in order to find the approximate solution of fractional Klein–Fock–Gordon equation in the form of rapidly convergent series. Existence and uniqueness analysis of the considered model is provided. We consider few numerical examples to validate the projected technique. The obtained results shows that this method is very efficient, simple in implementation and that it can be applied to solve other nonlinear problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.