Abstract
We present an approach to reduced-order modeling that builds off recent graph-theoretic work for representation, exploration, and analysis of computed states of physical systems (Banerjee et al., Comp. Meth. App. Mech. Eng., 351, 501–530, 2019). We extend a non-local calculus on finite weighted graphs to build such models by exploiting polynomial expansions and Taylor series. In the general framework for non-local calculus on graphs, the graph edge weights are intricately linked to the embedding of the graph, and consequently to the definition of the derivatives. In a previous communication (Duschenes and Garikipati, arXiv:2105.01740 [math.NA]), we have shown that radially symmetric, continuous edge weights derived from, for example Gaussian functions, yield inconsistent results in the resulting non-local derivatives when compared against the corresponding local, differential derivative definitions. Taking inspiration from finite difference methods, we algorithmically compute edge weights, considering the embedding of the local neighborhood of each graph vertex. Given this procedure, we ensure the consistency of the non-local derivatives in this setting, a crucial requirement for numerical applications. We show that we can achieve any desired orders of accuracy of derivatives, in a chosen number of dimensions without symmetry assumptions in the underlying data. Finally, we present two example applications of extracting reduced-order models using this non-local calculus, in the form of ordinary differential equations from parabolic partial differential equations of progressively greater complexity.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.