Abstract
In this paper, a thermal storage system based on a phase change material is proposed and investigated. The system is composed of several tubes that cross a phase change material mass. A fluid flowing in the tubes charges and discharges the heat storage system. A mathematical model of the system has been developed, which provides the time and space distribution of velocity, temperature, and liquid phase-changing material concentration in a non-stationary regime. A hybrid solution method based on finite volumes and finite differences techniques has been employed for the model equations in the MATLAB environment. To the tubes, a rectangular cross section has been assigned. The performance of the system in terms of accumulated energy density and accumulated power density has been investigated by varying some geometric parameters. The considered geometric parameters influence the number of tubes per unit of system width, the tube hydraulic resistance, the amount of phase change material around each tube, the heat transfer surface of the tube, and the heat storage velocity. In the parametric analysis, peaks have been evidenced in the investigated performance parameters at different instants after the beginning of the heat storage.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.