Abstract

A novel numerical method is presented for the calculations of the coupled propagation equations in multi-wavelength Raman fiber lasers. By taking the advantages of genetic algorithm and shooting method, only a few of the best individuals at each generation are chosen to implement several shootings in order to accelerate theirs converging. The output characteristics of an all-fiber three-wavelength Raman fiber laser have been analyzed based on the proposed algorithm. Results show that the total output power linearly depends on the pump power with a slope efficiency of ∼51%. For the three output Stokes, the slope efficiencies of the longer wavelengths are larger than that of the shorter ones because the optical energy at the Stokes with shorter wavelengths allows for a transfer of optical power to the longer Stokes via stimulated Raman scattering. We also find that the total output power degrades by less than 10% by adjusting the output-coupler reflectivity and is insensitive to the variation of the Raman fiber length over a large range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call