Abstract

The flow field of multi-parallelized swirling flow inside a circular pipe was investigated numerically. Two types of swirling flow configuration are considered. One type is the co-rotating type. Four co-rotating swirls are arranged at the vertex position of square in this type. The other type is the counter-rotating type which consists of two pairs of swirls having opposite swirl rotations. Each pair is arranged diagonally at the vertex position of a square. By coupling the discrete vortex method and boundary element method, unsteady flow simulation is performed. Swirl modeling with vortex elements is used in this simulation and its validity is confirmed. From the simulation results, in the co-rotating type, the four swirls interact and their shape is deformed. Each vortex motion vanishes rapidly in the downstream region. Finally, they are turned into a single swirling flow. In counter-rotating type, each vortex motion is maintained a little bit longer than co-rotating type, and their shape is not so deformed. However, the flow patterns are changed completely in the downstream region. The swirling velocity of each swirl mostly vanishes. Finally, they are turned into an axial flow. For the investigation of the mixing promoting effect due to parallelizing swirls, particle tracking simulations are performed in the co-rotating type and the counter-rotating type. As a comparison, the simulation for single swirl flow is also performed. In these simulations, the particles are introduced in the vicinity of pipe inner wall. In addition, the assumption that particles follow the flow motion absolutely is used. From the results, the motion of particles in these three cases is completely different. For the co-rotating and counter-rotating type, the particle entrainment into the main axial flow is clearly observed. This indicates the mixing is improved compared to single swirl flow. The difference of particle entrainment motion between co-rotating and counter-rotating type is slight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.