Abstract
Micromixers have significant potential in the field of chemical synthesis and biological pharmaceuticals, etc. In this study, the design and numerical simulations of a passive micromixer and a novel active electroosmotic micromixer by assembling electrode pairs were both presented with a cosine channel wall. The finite element method (FEM) coupled with Multiphysics modeling was used. To propose an efficient micromixer structure, firstly, different geometrical parameters such as amplitude-to-wavelength ratio (a/c) and mixing units (N) in the steady state without an electric field were investigated. This paper aims to seek a high-quality mixing solution. Therefore, based on the optimization of the above parameters of the passive micromixer, a new type of electroosmotic micromixer with an AC electric field was proposed. The results show that the vortices generated by electroosmosis can effectively induce fluid mixing. The effects of key parameters such as the Reynolds number, the number of electrode pairs, phase shift, voltage, and electrode frequency on the mixing performance were specifically discussed through numerical analysis. The mixing efficiency of the electroosmotic micromixer is quantitatively analyzed, which can be achieved at 96%. The proposed micromixer has a simple structure that can obtain a fast response and high mixing index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.