Abstract

In this paper, a novel design for hybrid battery thermal management systems (BTMS) is proposed and evaluated from the economic and engineering perspectives. Numerical models are compared with phase change materials (PCM) BTMS. Further, the suggested hybrid cooling system’s thermal performance at the pack level is investigated considering cell-to-cell variation. A three-dimensional thermal model is used for the numerical simulation of the battery cooling system. The probability distributions is utilised for the cell-to-cell variations of a 168-cell battery pack. Results shows that for a 53 Ah lithium-ion battery (LIB) under a 5C discharge rate, a hybrid cooling system with two-sided cold plates can reduce the maximum temperature from ∼64 ∘C to 46.3 ∘C with acceptable system weight and power consumption, which is used for further pack level simulation. It is concluded that the two-sided cold plate hybrid design system can manage the maximum average temperature as well as temperature difference of cells in the desirable range at extreme cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.