Abstract
Latent thermal energy storage (LTES) system offers high energy storage density and nearly isothermal operation for concentrating solar power generation. However, the low thermal conductivity possessed by the phase change material (PCM) used in LTES system limits the heat transfer rates. Utilizing thermosyphons to charge or discharge a LTES system offers a promising engineering solution to compensate for the low thermal conductivity of the PCM. The present work numerically investigates the enhancement in the thermal performance of charging and discharging process of LTES system by embedding thermosyphons. A transient, computational analysis of the LTES system with embedded thermosyphons is performed for both charging and discharging cycles. The influence of the design configuration of the system and the arrangement of the thermosyphons on the charge and discharge performance of the LTES installed in a concentrating solar power plant (CSP) is analyzed to identify configurations that lead to improved effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.