Abstract

A finite element model is established using MIDAS GTS NX 2018 software, in order to simulate the behavior of an instrumented large diameter bored pile, installed in multi layered soil and tested under three different loading and unloading cycles at Damietta Port Grain Silos project site. Modified Mohr-Coulomb constitutive model has been used to define the drained condition for sandy soil layers and undrained condition for clayey soil layers. Necessary soil parameters were determined from extensive laboratory and in-situ soil tests. Numerical results are compared with field loading test measurements and very good agreement is obtained. The effect of dilatancy angle on pile load transfer mechanism was investigated, and results of the study showed important effect for the dilatancy angle on the pile settlement values and the load distribution along the pile shaft. Results obtained also showed that the plastic zone below the base of the pile at failure extended laterally to about seven times the pile diameter and vertically to about 5 times the pile diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.