Abstract

In keyhole plasma arc welding (PAW), the formation of the keyhole involves complicated thermo-physical mechanism. The shape and dimensions of the keyhole directly determine the heat deposition along the thickness direction of the test plates, the penetration depth and the weld bead quality. Based on analysis of the forces acting on the weld pool, a keyhole model is established according to the force-balance condition on the keyhole wall. The shape and dimensions of quasi-steady state keyhole are numerically predicted. The keyhole shape and size are used to calibrate some distribution parameters of the combined volumetric heat source which takes into consideration the geometrical feature of welds with larger ratio of penetration depth to width and volumetric distribution characteristic of the plasma heat intensity along the plate thickness direction. The temperature fields on stainless steel plates are numerically simulated. The calculated fusion line at the transverse cross-section of PAW welds are compared with the experimental measurements. It is found that the predicted results are in agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.