Abstract
Purpose This study aims to present a numerical analysis of the behavior of the electric field and flow field characteristics under electrohydrodynamics (EHD) force. The influence of the jet airflow under the EHD force is investigated when it impacts the inclined flat plate. Design/methodology/approach The high electrical voltage and angle of an inclined flat plate are tested in a range of 0–30 kV and 0–90°, respectively. In this condition, the air is set in a porous medium and the inlet jet airflow is varied from 0–2 m/s. Findings The results of this study show that the electric field line patterns increase with increasing the electrical voltage and it affects the electric force increasing. The angle of inclined flat plate and the boundary of the computational model are influenced by the electric field line patterns and electrical voltage surface. The electric field pattern is the difference in the fluid flow pattern. The fluid flow is more expanded and more concentrated with increasing the angle of an inclined flat plate, the electrical voltage and the inlet jet airflow. The velocity field ratio is increased with increasing the electrical voltage but it is decreased with increasing the angle of the inclined flat plate and the inlet jet airflow. Originality/value The maximum Reynolds number, the maximum velocity field and the maximum cell Reynolds number are increased with increasing the electrical voltage, the inlet jet airflow and the angle of the inclined flat plate. In addition, the cell Reynolds number characteristics are more concentrated and more expanded with increasing the electrical voltage. The pattern of numerical results from the cell Reynolds number characteristics is similar to the pattern of the fluid flow characteristics. Finally, a similar trend of the maximum velocity field has appeared for experimental and numerical results so both techniques are in good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.