Abstract
Result of hydrogen (H) and deuterium (D) experiments done by NIFS research and development negative ion source (RNIS) demonstrated that the co-extracted electron current with the negative ions and the electron density in the driver region in the D experiment have been around three times higher than that in the H experiment. To investigate mechanism of this difference, electron transport simulation using 3D kinetic particle tracking model KEIO-MARC code has been modified and applied to analysis of the isotope effect in the NIFS negative ion source. Simulation result suggests that impacts of isotope effects of sheath potential drop, coulomb collisions, and some reactions of ground state molecules and ions on the electron density is not large to explain the experimental result of the increase in the electron density in the plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.