Abstract

This paper investigates the influence of the absorber/window junction properties, on performances of CdTe/CdS:O solar cell, using SCAPS-1D package. Considering the case of ideal interfaces, charges transport mechanisms across the solar cell configuration are dominated by the diffusion and thermionic emission theories. We have shown that, with about 50 nm thickness of the absorber surface layer (CdTe1−xSx) and ΔEc at the CdTe/CdS:O interface comprises in the range [− 0.17 eV; 0 eV], an efficiency of about 21.85% can be reached. On the other hand, we obtained 21.77% with interface states density (Nt) in the range of 106–1011 cm−2 and a flat conduction band at absorber/window interface. Further simulations predict that reducing interface states and ΔEc at the absorber/window interface leads to the improvement of the cell efficiency. This improvement is also observed with the increase in the thickness of CdTe1−xSx and CdTe layers up to some values. Efficiency as high as 21.75% was obtained with ΔEc of − 0.1 eV, Nt less than 1010 cm−2 and CdTe bulk absorber thickness of 1.3 µm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.