Abstract

The paper presents an analysis and assessment of an interaction between a model tunnel lining and surrounding non-cohesive soil. The analysis was conducted with numerical simulations using the author’s program based on an algorithm of the discrete element method. Previously calibrated numerical model was used in the calculations. Calibration was based on comparison of the construction deformations observed in the laboratory tests and during the simulation. Numerous simulations, performed in the calibrated numerical model, included calculations for a flexible and rigid construction of the lining. The tunnel construction loads, stress distribution in the surrounding soil, and soil particles’ displacements were investigated. Analyses were conducted in two variants — when only soil weight is acting on the tunnel construction and when the external load transmitted from the surface is present. Also two variants of the backfill height were investigated — they were equal to one and two diameters of the tunnel. The values of tunnel loads, which were numerically calculated, were compared with the corresponding values, calculated by the Hewett’s method. It is shown that distribution of tunnel loads and stresses in the surrounding soil is strongly linked with the tunnel construction stiffness, thus it can be significantly different from standard load situations for such constructions. Keywords: civil engineering, discrete element method, tunnel lining

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.