Abstract

A fully coupled, partitioned, numerical model that accounts for fluid–structure interaction is applied for a study of the installation effects of Coriolis flowmeters. The modeled configurations include a single straight-tube full-bore flowmeter and two different twin tube flowmeters with straight and U-shaped measuring tubes. Three different flow disturbance elements positioned upstream of the flowmeter are considered in the study, as well as two different types of flow splitters in the case of the twin tube configurations. The installation effects are estimated by comparing the mass-flow sensitivities under the disturbed and fully developed flow conditions at the inlet of the flowmeter. For the modeled twin tube flowmeters they are found to be of the order of one-tenth of a per cent. These relatively small values of the installation effects are related to the presence of flow splitters and to the averaging of the motion of both measuring tubes in the twin tube configurations. Similarly, averaging the response from two sensor pairs instead of only a single sensor pair reduces the circumferential variations and the peak values of the installation effects for asymmetric flows in the single straight-tube flowmeter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call