Abstract

On the 11th of March, 2011, a subduction earthquake of magnitude Mw9.0 happened at the northeast of Japan, generating a tsunami which resulted in huge damage in Japan. Okada's elastic fault model is used to generate the deformation of the sea bottom based on USGS sources and UCSB sources respectively. The shallow water equations are solved by the adaptively refined finite volume methods so that it can compute the propagation of tsunami in the Pacific Ocean efficiently. The computed time series of the surface elevation are compared with the measured data from NOAA real-time tsunami monitoring systems for model validation, and UCSB sources derive better results than USGS sources. Furthermore, one nested domain with fine grid and higher topography reso- lution is combined to compute numerically this tsunami spreading in the Bohai Sea, Yellow Sea, East China Sea, and North of South China Sea. The impacts on China Coast and seas are analyzed and discussed. The results show that the tsunami has almost no impact in the Bohai Sea and Yellow Sea. It has some kind impact on the East China Sea and South China Sea. However, maximum wave height on China Coast is smaller than 0.5 m. It is thus concluded that the 2011 Tohoku tsunami did not generate a significant in- fluence on China Coast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call