Abstract

Random search processes for targets that are inhomogeneously distributed in a search domain require spatially inhomogeneous search strategies to find the target as fast as possible. Here, we compare systematically the efficiency of homogeneous and inhomogeneous strategies for intermittent search, which alternates stochastically between slow, diffusive motion in which the target can be detected and fast ballistic motion during which targets cannot be detected. We analyze the mean first-passage time of homogeneous and inhomogeneous strategies for three paradigmatic search problems: (1) the narrow escape problem, i.e., the searcher looks for a small area on the boundary of the search domain, (2) reaction kinetics, i.e., the detection of an immobile target in the interior of a search domain, and (3) the reaction-escape problem, i.e., the searcher first needs to find a mobile target before it can escape through a narrow area on the boundary. Using families of inhomogeneous strategies, partially motivated by the organization of the cytoskeleton in cells with a centrosome, we show that they are almost always more efficient than homogeneous strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call