Abstract

An accurate analysis of the air-guiding in hollow core photonic bandgap fibers with a modified honeycomb air-hole lattice has been carried out. The influence of the hollow core dimension, as well as of the cladding geometric parameters on the confinement loss, the nonlinear coefficient and the single-mode behaviour of the fibers has been investigated through a full-vector modal solver based on the finite element method. Simulation results have shown that confinement loss lower than 0.1 dB/km, a nonlinear parameter lower than 0.01 (W · km)−1 and an effectively single-mode behaviour over a wavelength range of about 150 nm can be achieved with eight air-hole ring modified honeycomb fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.