Abstract

This paper presents a numerical analysis of heat transfer in a photovoltaic (PV) panel for indoor cases. A mathematical model was first described from energy conservations, in which the effects of thermal storage, the absorption of optical energy, as well as the thermal contact resistances at interfaces between materials in the PV panel were taken into consideration. Based on this model, for indoor cases, numerical analysis of heat transfer was then carried out by using a fractional scheme under the assumptions of constant physical properties, and constant efficiency of the optical energy conversion for the panel working under indoor conditions. It was found that the thermal contact resistances at interfaces play a profound role of the temperature field in a PV panel. The effect of thermal storage is rather significant for the evolution of average surface temperature and average temperature of solar cells. However, the extinction coefficient of the transparent glass cover shows just a slight influence on temperature field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.