Abstract

The two-dimensional aligned MHD incompressible movement of a nano liquids towards a permeable stretching sheet are considered in the presence of Joule heating, viscous dissipation, and slip condition. Additionally, the influence of mass suction, convective condition, and heat source/sink are used. The nano liquid is a mixture of water (H2O) and copper (Cu) nanoparticles. The dimensionless variables were utilized to change the nonlinear coupled partial differential equations (PDEs) into the nonlinear ordinary differential equations (ODEs) as well as the bp4c scheme were used to find the solution. The different outcomes of the heat transfer (Nusselt number), velocity, skin friction coefficient, and the temperature have been reported graphically depending on the different estimates of concerning parameters. It is noticed that the friction drags raises against the intensity of porosity and slip velocity whereas the Nusselt number reduces due to the escalation of Hartman and Eckert number and the volume fraction of nanoparticles. Moreover, the temperature and the thermal boundary layer thickness increases against the escalation of Hartman, Biot and Eckert number and the volume fraction pf the nanoparticles. Similarly, the strength of porosity, slip velocity and the magnetic field gradually declines the velocity profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.