Abstract

Natural convection heat transfer from a hot vertical hollow brass cylinder has been studied experimentally and numerically. The governing equations of continuity, momentum and energy are discretised by using an implicit finite difference technique. The velocity and temperature profiles, boundary layer thickness, local and average heat transfer coefficient are obtained using the numerical simulation. The predictions of the numerical simulation are compared with the experiments conducted on a laboratory-scale apparatus and with the results obtained from analytical solutions available in literature. The numerical simulation results are obtained for two fluids; air and water vapour whereas the experiments are conducted for air only. The induced flow is laminar in both the simulation and the experiments. The dependence of boundary layer thickness on Prandtl number is discussed. The numerically obtained Nusselt number is found quite close to the analytical one. The results show the heat dissipation from the cylinder to surrounding fluid is higher for air than for water vapour. The various factors that affect the comparison of the experimental results with the numerical simulation are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call