Abstract
The groundwater flow system in a crystalline aquifer system in parts of Northern Ghana was simulated and calibrated under steady-state conditions. The objective was to estimate the regional distribution of a key aquifer hydraulic parameter (the hydraulic conductivity) and recharge and also to predict possible effects of different abstraction and groundwater recharge scenarios on the sustainability of groundwater resources in the area. The study finds that the hydraulic conductivity field is quite homogeneous and has values ranging between 1.70 and 2.24 m/day. There is an apparent dominance of regional groundwater flow systems compared to local flow systems. This is probably attributed to the homogeneity in the hydraulic conductivity field and the absence of complex local relief. Estimated groundwater recharge ranges between 0.036 and 0.164 m/yr representing 3.6 and 16.4 % of the local annual precipitation, respectively. Substantial subsurface inflows and outflows have also been simulated through general head boundaries. The simulation suggests that under the current conditions of groundwater recharge estimated at calibration, the system can sustain increment in groundwater abstraction by up to 50 % without any significant changes in the groundwater flow geometry and drawdowns in the hydraulic heads. However, significant drawdowns will be expected in the wake of 100 % increment in groundwater abstraction and a reduction in recharge by 10 % during the 20-year period. Under such conditions, the flow geometry will significantly be altered and a reversal in groundwater flow will be observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.