Abstract
Evolution of the Earth’s mantle from a hot initial state is modelled in the Boussinesq approximation within the framework of a thermochemical model. The spatial dynamics of substance within a spherical layer is illustrated by video records. Introduction of a chemical component into intermittent (with regard for an endothermic phase transition) thermal convection facilitates the overcoming of the phase barrier, enhances nonlinearity of the dynamic process, and promotes the formation of new cycles in the evolutionary process. As a result, avalanches become more numerous in the thermochemical variant and reduce to a regional scale; therefore, it is more natural to associate them with Bertrand (rather than Wilson) cycles. A basically new result of the numerical modelling is that convection developing from an unstable hot initial state gives rise to global mantle overturns (see Animations 2, 3, 4) decaying with cooling material and remarkably correlating with data of historical geology on Wilson cycles. The inferred spatial patterns of overturns are represented by a single funnel-shaped sink and a few uprising superplumes, accounting for the origins of supercontinents, opening of oceans, and the observed asymmetry of the planet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.