Abstract

Extensive research has been conducted to investigate the blast effects on building structures and the protective design methods using the fiber-reinforced polymer (FRP) strengthening concepts in resisting structural damage and preventing injuries against dynamic explosive impacts. Both numerical and experimental studies have proved the effectiveness of FRP in strengthening structures to resist blast loads. However, problems related to end anchorage, bond length, and premature peeling have been concerns when strengthening structures in flexure or shear using FRP. In this paper, numerical analyses of FRP-composite-strengthened RC walls with or without additional anchors are carried out to examine the structural response under blast loads. The results illustrated that an anchor system is often necessary when using external FRP laminates for strengthening RC walls to prevent premature peeling. This study presents three simulations of RC walls, namely, an unstrengthened RC wall, an FRP-composite-strengthened R...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call