Abstract

This study integrates a large eddy simulation (LES) model and volume of fluid (VOF) method to simulate the free-surface flows over inflexible circular-crested dams of different shapes. The simulated water depths and pressures on the dam surface are validated by the results of laboratory experiments. Then the numerical model examines the effects of the water depths and the Reynolds number on the hydrodynamic force and the discharge coefficient. The simulation results reveal that the time-averaged drag coefficient decreases as the downstream water depth H2 increases, while the influence of water depth H2 on the lift coefficients is less significant. Furthermore, the discharge coefficients of circular and elliptical dams, computed from the simulated velocity profiles over the crest of the dam, agree with the formulae suggested by previous studies when the downstream depth H2/H1 < 0.90. In contrast, the discharge coefficient of a tear-shape dam is slightly larger than those of circular dams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.