Abstract
Because of the periodic effects of ocean waves, there are great discrepancies between the operational characteristics of nuclear power systems in ocean environment and that of land-based nuclear power systems. In some special operational status, like natural circulation, the additional forces due to ocean environment may impose so great disturbance on the coolant flow that theatres the safety operation of the systems. In the present paper, the turbulent flow in rectangular channels in ocean environments is investigated theoretically with CFD code FLUENT. The effects of several parameters on turbulent flow are analyzed. The effects of rolling motion includes two parts, the first part is the additional force parallel to flowing direction, which can affect on the pressure drop of the flow and change the flowing velocity, and the other part is the additional force perpendicular to flowing direction. In ocean environments, the flowing characteristics of turbulent flow are dominated by the additional force parallel to flowing direction. The effect of additional force perpendicular to flowing direction is very limited. In rolling and heaving motions, if the flowing velocity is the same, the flowing characteristics of turbulent flow are nearly the same, too. The bigger the Reynolds number is, the more serious the oscillation of turbulent kinetic energy and frictional resistance coefficient is, and the more the oscillation of turbulent flow is. The relationship between average frictional resistance coefficient and velocity oscillating amplitude is quadratic. And the oscillating amplitude of frictional resistance coefficient is in direct ratio with velocity oscillating amplitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.