Abstract

A nonlinear elastoplastic finite element model has been developed for face-shell bedded hollow masonry walls subject to in-plane concentrated loads. The model takes into account geometric and material nonlinearities as well as damage due to progressive cracking. Behaviour of the masonry components subject to compressive states of stress is modelled using the theory of plasticity, and cracking is modelled using both discrete and smeared cracking approaches. The model is generated on a SUN SPARC 10/31 workstation using the preprocessor of the finite element program ANSYS; the finite element solution is obtained using the ABAQUS program on the Fujitsu VPX 240/10 and IBM RS/6000 workstation. A brief summary of the numerical modelling and the iterative procedures is discussed. Results from simulated tests of seven-course high wallettes subject to concentrated loads are used to verify the behaviour of the numerical analyses. The methodology, when combined with substructuring, allows analysis of substantially larger walls than would more typical 3-D analyses. The model can be used to check existing design rules and develop more rational design methods for hollow masonry subject to concentrated load. Key words: masonry, hollow concrete masonry, finite element modelling, cracking, failure, strength enhancement factor, concentrated loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.