Abstract

To investigate useful properties caused by various interference effects of electron waves in a mesoscopic system, we carry out a numerical analysis of electron-wave propagation by a combination of several techniques for solving the two-dimensional Schr\odinger equation. The techniques provide an accurate solution for a realistic potential profile in a point-contact structure, and are simple to apply even under magnetic fields. By using this calculation method, we investigate the detection of the propagation from a quantum point-contact injector to a point-contact detector under magnetic fields. We calculate electron-wave propagation and transfer conductance through a wedge-shaped detector, which has a smaller scattering cross section for injected electron waves than ordinary line-shaped detectors, and analyze the interference due to the detector as a function of detector parameters. We conclude that a well-designed wedge-shaped point contact could provide good detection of electron-wave propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.