Abstract

This paper describes a numerical development of image converters and intensifiers which incorporate an inverting electron optical system (EOS) and a microchannel plate (MCP) as an amplifier. The numerical design of the system includes calculation of the electrostatic field in the device, trajectories of electrons emitted from a photocathode, and determination of the modulation-transfer-function (MTF) which gives the objective estimation for the image quality. Results of the numerical experiments are shown, and the EOS with optimized characteristics is developed. It provides the nearly flat image surface, determines the position of the surface of the best focus, minimizes the image distortion and reduces a noise factor of the MCP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.