Abstract

The propagation of monochromatic electromagnetic waves in metal-dielectric waveguides of simple geometry (circular cylindrical) filled with nonlinear inhomogeneous medium is considered. The Kerr nonlinearity is studied. A physical problem is reduced to solving a nonlinear transmission eigenvalue problem for a system of ordinary differential equations. Eigenvalues of the problem correspond to propagation constants of the waveguide. A method is proposed for finding approximate eigenvalues of the nonlinear problem based on solving an auxiliary Cauchy problem (by the shooting method). The existence of eigenvalues that correspond to a new propagation regime is predicted. A comparison with the linear case is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.