Abstract

Temperature dependence of ball indentation behaviour of Armox500T and IN718 in terms of Meyer’s hardness, constraint factor (CF) and pile-up around indentation as a function of average strain at ambient temperature and elevated temperature (673 K) has been analysed using FEA. Subsequently, FE model has been validated by experimental data for IN718 and Armox500T. The value of CF for Armox500T and IN718 at RT is found to be 2.80 and 2.75, respectively. The CF value is increased to 3.66 and 3.41, respectively, at 673 K indicating the dependence of temperature. It is also observed that pile-up at a given strain for Armox500T is higher (low strain hardening) compared to IN718 (high strain hardening) under static indentation conditions. The FEA results are in good agreement with expansion cavity model and fully plastic model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call