Abstract

This paper numerically investigates the dynamic buckling of thin imperfect rectangular plates subjected to intermediate-velocity impact loads. From numerical results obtained, a dynamic buckling and a dynamic yielding critical condition are defined, and the corresponding critical dynamic loads are estimated. Numerical model employed in the present study is validated by experimental data reported earlier. Results from parametric study indicate that initial imperfection and load duration have significant influence on the dynamic buckling of the plates. The smaller the initial imperfection and the load duration, the higher the dynamic buckling critical loads of the plates. Moreover, different hardening ratios of plate material also affect the elastic–plastic dynamic buckling properties of the plates. If the plate buckles plastically, the dynamic buckling load increases as the hardening ratio of plate material increases. Unlike thin plates under high-velocity impact that buckling always occur after load application, plates under intermediate-velocity impact analyzed in the present study all buckle during the loading phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call