Abstract
The simultaneous oblique impact of multiple droplets on a liquid film is an intricate phenomenon prevalent in diverse natural and industrial processes. However, previous studies have primarily focused on single droplet impact, while an in-depth understanding of the more complex multi-droplet scenario remains lacking. The current study aims to numerically investigate the simultaneous oblique impact of two droplets on a water film using a three-dimensional Volume of Fluid (VOF) model. The effects of the Weber number and the impact angle on the crown behavior are carefully analyzed. The results demonstrate that increasing the Weber number enhances the central uprising sheet height but has minor influences on the upstream crown radius and central sheet radius. In contrast, the increase in the impact angle leads to a decreased upstream crown radius and an increased central sheet radius, while the central sheet height remains relatively unaffected. In addition, the splashing threshold for the dual droplet impact cases is significantly lower than that of the single droplet impact cases due to the interactions between the adjacent crowns. The present results provide novel insights into the underlying physics and useful supports in developing predictive models for the intricate multi-droplet impact phenomenon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.