Abstract

Shield tunnel subjected to high inner water pressure is used to prevent waterlogging, and DRC (Ductile cast iron segment and Reinforced Concrete) segment has been developed for obtaining high loading capacity in the linings of underground drain shield tunnel. In general, tunnel linings resist bending moment, hoop and shear forces. Cracks will occur in tunnel linings under high inner water pressure during operating period, while tensile stress will appear at member section. On the basis of the existing experimental results, the crack pattern, relative slip, contact stress, strain distribution, and relationship between deflection and load of DRC segment were investigated by finite element method. A three-dimensional finite element model of DRC segment was proposed to simulate its nonlinear behaviors by applying MSC.Marc software package. Taking the three sources of nonlinearity into account, the proposed numerical model fully presented the complicated behaviors of DRC segment during the whole loading process. Results indicated that the numerical studies agreed well with the experimental tests, and comparisons between them demonstrated that the proposed numerical model could excellently analyze the nonlinear behaviors of DRC segment under combined hoop and bending loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.