Abstract

A traditional way of geothermal energy production implies hot brine extraction from the reservoir to a surface facility. This method is economically profitable only for high enthalpy reservoirs associated with shallow depths and high temperatures. The low enthalpy geothermal (LEG) projects are out of consideration due to the high cost of produced electric power related to expensive drilling, cost of the binary cycle system, and long term installation cost. This paper presents a new zero mass extraction method utilizing downhole heat exchanger (DHE) with no geo-fluid production to the surface. The well design stays as a single horizontal well with coupled production and injection sections. The brine pump is located between the sections providing hot brine circulation through the DHE. The coupled fluid flow and heat transfer mathematical model was developed and simulated using nodal analysis method. The LEG reservoir prototype located in South Louisiana was used to study several cases of the DHE lengths, inclination angles, reservoir permeabilities, and flow rates optimization. According to the analysis, the power unit is able to provide 160 kW of net electric power with CO2 working fluid circulating inside a single lateral well. Increasing the reservoir temperature and the number of laterals, the available power production rises up to 600 kW with an attractive electricity cost of $21.84/MWh at 7000 m well depth. This methods opens a new prospective for the depleted petroleum wells converting them to the electricity production units.

Highlights

  • Nowadays, geothermal energy production is a well-developed industry where the produced electricity cost is competitive with the traditional fossil fuel power plants

  • The net power increases at low brine flow rates, but later reduces due to brine power enhancement associated with frictional losses

  • The optimization was performed for the maximum net power production

Read more

Summary

Introduction

Geothermal energy production is a well-developed industry where the produced electricity cost is competitive with the traditional fossil fuel power plants. This is true when dealing with high enthalpy reservoirs containing high temperature rock saturated with brine (Kubik 2006). Low enthalpy resources (LER) are abandoned but have deep subsurface locations and much lower temperature. For these reasons, LER development requires several complicated and expensive tasks that make the energy production projects economically unprofitable (Lukawski et al 2014).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call