Abstract

A fast numerical method based on the Cauchy singular integral equations is presented to determine the contact pressure and extents for the contact of two-dimensional similar isotropic bodies when the contact area consists of two separate regions. The partial-slip problem is then solved to determine shear tractions using an equivalence principle. The extents of the contact are not all independent but related to a compatibility equation constraining the displacements of an elastic body in contact with an equivalent rigid body. A similar equation is found for the extents of the stick zones in partial-slip problems. The effects of load history are incorporated into the shear solution. The method is applicable to a wide range of profiles and it provides significant gains in computational efficiency over the finite element method (FEM) for both the pressure and partial-slip problems. The numerical results obtained are compared with that from the FEM for a biquadratic indenter with a single concavity and showed good agreement. Lastly, the transition behavior from double to single contacts in biquadratic profiles is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.